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A general procedure is discussed to formulate a coupling function capable of targeting desired responses
such as synchronization, antisynchronization, and amplitude death in identical as well as mismatched chaotic
oscillators. The coupling function is derived for unidirectional, mutual, and matrix type coupling. The matrix
coupling, particularly, is able to induce synchronization, antisynchronization, and amplitude death simulta-
neously in different state variables of a response system. The applicability of the coupling is demonstrated in
spiking-bursting Hindmarsh-Rose neuron model, Rössler oscillator, Lorenz system, Sprott system, and a
double scroll system. We also report a scaling law that defines a process of transition to synchronization.
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I. INTRODUCTION

The concept of synchronization �1� in dynamical systems
is able to explain collective behaviors of oscillatory systems
and many spatial patterns observed in nature and artificial
systems. These observations usher in potential applications
in complex living systems �2,3� such as heart and brain and
in engineering systems such as secure communication �4�
and weak magnetic field sensing �5�. From the viewpoint of
applications, control of synchronization and ability to engi-
neer such coherent behaviors in dynamical systems are im-
portant. Control of synchronization as well as desynchroni-
zation �6,7� is, particularly, important in relevance to brain
dynamics. An automatic control of phase synchronization
�PS� in coupled oscillators was proposed earlier �8� for ap-
plications in engineering, ecology, and medicine. Recently,
engineering �9� desired responses such as sequential patterns
as well as desynchronization is explored in a population of
oscillators using feedback control. Formulating appropriate
coupling function in dynamical systems can be an important
approach for realizing and controlling desired coherent be-
haviors such as complete synchronization �CS� �10�, antisyn-
chronization �AS� �11�, lag synchronization �LS� or PS �12�,
generalized synchronization �13�, and time-scale synchroni-
zation �14�. Besides synchronized states in coupled oscilla-
tors, realizing amplitude death �AD� �15� in identical oscil-
lators is another challenging task.

We report a general formulation of coupling function for
chaotic oscillators that can realize both the conventional type
and a mixed type of synchronization. In the conventional
type synchronization, all state variables of chaotic oscillators
attain one form of synchronization �say, CS or AS�. In case
of mixed synchronization, separate state variables attain dif-
ferent forms of synchronization simultaneously. An adaptive
method was attempted �16� recently for achieving coexisting
CS and AS in identical oscillators based on Lyapunov func-
tion stability. This method is so far restricted to numerical
studies only and of limited applicability. Instead, we describe
a more general and a physically realizable definition of cou-
pling using open-plus-closed-loop �OPCL� �17� method to
achieve CS and AS and, in addition, to induce AD in any

response system identical or mismatched. In a recent letter
�18�, we reported an extension of the unidirectional OPCL
coupling �17� to mismatched case with experimental evi-
dence. Here, we add details of the unidirectional coupling
and then introduce AD in identical response system. We re-
port a transition route to synchronization that obeys a scaling
law independent of any system. We further extend the theory
to mutual coupling for realizing AS. The mutual OPCL cou-
pling was proposed earlier �19� for CS only. However, AS is
found restricted to inversion symmetric dynamical systems
only under mutual OPCL coupling. This is similar to what
was reported earlier �11,20� for AS under the conventional
linear unidirectional or mutual coupling. Finally, we intro-
duce the matrix type unidirectional coupling. Using this ma-
trix coupling, a chaotic driver can induce different possible
combinations of correlated dynamics in a response system:
for example, a pair of similar state variables may develop
AS, while the other pair is at CS, yet another response vari-
able can be pushed to a resting state or AD. This matrix
coupling is useful in processing industry or catalytic reaction
where one may need to control concentrations of reacting
chemical components in different proportions for obtaining a
desired product output.

The paper is structured as follows: theory of unidirec-
tional OPCL coupling is described in Sec. II. Numerical ex-
amples of identical oscillators showing CS, AS, and AD are
discussed in Sec. II A and of mismatched case in Sec. II B.
The route of transition to synchrony and its scaling behavior
is described in Sec. II C. The mutual OPCL coupling is de-
scribed for AS in Sec. III. In Sec. IV, the matrix coupling is
presented with a numerical example. Finally, results are sum-
marized in Sec. V.

II. OPCL COUPLING: UNIDIRECTIONAL

The unidirectional OPCL coupling was first proposed to
implement CS in two identical chaotic oscillators �17� and
later extended to networks of identical chaotic oscillators
�21�. We extended �18� the theory to mismatched oscillators
to realize CS, AS, and amplification or attenuation of chaos.
The coupling function is briefly described here for the mis-
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matched case: a chaotic driver is defined by ẏ= f�y�+�f�y�,
y�Rn, where �f�y� contains the mismatch terms. The model
of the chaotic oscillator with parameters is assumed known a
priori. It drives another chaotic oscillator ẋ= f�x� ,x�Rn to
achieve a goal dynamics g�t�=�y�t�, where � is a constant.
After coupling, the response system is given by

ẋ = f�x� + D�x,g� , �1�

where the coupling function is defined as

D�x,g� = ġ − f�g� + �H −
� f�g�

�g
��x − g� . �2�

�f�g� /�g is the Jacobian of the dynamical system and H is
an arbitrary constant matrix �n�n�. The error signal of the
coupled system is defined by e=x−g when f�x� can be writ-
ten, using the Taylor series expansion, as

f�x� = f�g� +
� f�g�

�g
�x − g� + ¯ . �3�

Keeping the first-order terms in Eq. �3� and substituting in
Eq. �2�, the error dynamics is obtained as ė=He from Eq.
�1�. Now if H becomes a Hurwitz matrix whose eigenvalues
all have negative real parts, e→0 as t→� �17,18� and we
obtain asymptotically stable synchronization.

The essential of the coupling function to achieve synchro-
nization is the appropriate selection of the elements of the H
matrix that is constructed from the Jacobian of the model
flow of the interacting oscillators. The elements of the ma-
trix, Hij, are chosen as Hij = ��f�g� /�g�ij when ��f�g� /�g�ij is
a constant in Eq. �2�. If ��f�g� /�g�ij involves any state vari-
able, it is replaced by a constant pij. Next essential factor in
the definition of the coupling function is appropriate choice
of the parameter values pij. They are to be so selected as to
satisfy Routh-Hurwitz �RH� criterion �17� that ensures eigen-
values all with negative real parts. The H is then defined as a
Hurwitz matrix. For a three-dimensional system, the H ma-
trix �3�3� has the characteristic equation

�3 + a1�2 + a2� + a3 = 0, �4�

where ai �i=1,2 ,3� are constants and the RH criterion is
given by a1�0,a1a2�a3 ,a3�0. Once the RH criterion for
the H matrix is fulfilled, an asymptotic stability of synchro-
nization is established even in the presence of parameter mis-
match. The multiplying constant � in the goal dynamics can
now be used as a control parameter to realize either of the
correlated dynamics, CS ��=1�, AS ��=−1�, and attenuation
�0� ����1� or amplification �����1� along with AS or CS.
A state of AD can also be induced in the response system by
a choice of �=0. This general form of the coupling thus
allows flexibility in switching one to the other type of syn-
chronization �AS or CS� and controlling of amplification or
attenuation. This capability of switching synchronization has
a potential application in message encoding �22�.

A. Numerical simulation: Identical oscillators

We elaborate the unidirectional OPCL coupling in two
identical oscillators using a spiking-bursting Hindmarsh-
Rose �HR� neuron model �23�,

ẏ1 = y2 − ay1
3 + by1

2 − y3+I, ẏ2 = c − dy1
2 − y2,

ẏ3 = r�s�y1 + 1.6� − y3	 . �5�

y1 is the membrane potential, y2 and y3 are associated with
fast and slow membrane currents, and I is the bias current.
The Jacobian of the model is

� f

�y
= �− 3ay1

2 + 2by1 1 − 1; − 2dy1 − 1 0; rs 0 − r�T,

�6�

where y= �y1 y2 y3�T; T denotes transpose of a matrix. The H
matrix of the HR model is obtained from its Jacobian as
explained above,

H = �p1 1 − 1; p2 − 1 0; rs 0 − r�T. �7�

We consider model �5� as the driver and another identical
HR system as a response. The coupling function D�x ,g� is
then derived using Eqs. �2� and �3�. The response HR oscil-
lator after coupling is obtained as

ẋ1 = x2 − ax1
3 + bx1

2 − x3+I + a���2 − 1�y1
3 + b��1 − ��y1

2

+ �� − 1�I + �p1 − 2b�y1 + 3a��y1�2	�x1 − �y1� ,

ẋ2 = c − dx1
2 − x2 + c�� − 1� + d��� − 1�y1

2

+ �p2 + 2d�y1��x1 − �y1� ,

ẋ3 = r�s�x1 + 1.6� − x3	 + 1.6rs�� − 1� . �8�

For the H matrix in Eq. �7� to be a Hurwitz matrix, the
parameters �p1 , p2� are appropriately selected to fulfill the
RH criterion, p1�r+1, when we assume p2=0. For our
simulation, we select p1=−1.5 to realize CS and AS by
choosing �=1,−1, respectively. Figure 1 shows the time se-
ries x1 and y1 of response and driver neurons. Plots of x1 vs
y1 confirm CS ��=1� and AS ��=−1�. For a choice of �
=0, the driver neuron can induce AD or a resting state �15� in
an identical response neuron: all the response variables cease
to zero amplitude although only one of the response vari-
ables, x1, is shown in Fig. 1�e�. Another option is to induce
attenuation �amplification� over and above AS or CS at the
response by a choice of 0� ����1�����1�. However, it is
more interesting if one can control different response vari-
ables in different correlated states with those of the driver:
any one of the state variables in response remains oscillatory
and develops AS or CS with a similar variable of the driver
and another in attenuated �amplified� state over and above in
CS or AS and even may be pushed to a resting state by the
driver. This opens up possibilities of controlling the level of,
say, membrane voltage and slow and fast currents across the
membrane of a neuron and yet maintains different forms of
synchronization. This mixed type synchronization is dis-
cussed in Sec. IV in more detail.

B. Numerical simulations: Mismatched oscillators

We now describe the mismatched case with the example
of Rössler system,
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ẋ1 = − �x2 − x3, ẋ2 = x1 + bx2,

ẋ3 = c + x3�x1 − d� . �9�

The driver Rössler oscillator with mismatches is given by

ẏ1 = − �y2 − y3 − ��y2, ẏ2 = y1 + by2 + �by2,

ẏ3 = c + y3�y1 − d� + �c − �dy3, �10�

where ��, �b, �c, and �d are the mismatches in param-
eters. The H matrix is again obtained from the Jacobian of
the Rössler model while the coupling function is defined
using Eqs. �2� and �3�. The response for the mismatched
oscillator after coupling is

ẋ1 = − �x2 − x3 − �����y2, ẋ2 = x1 + bx2 + ���b�y2,

ẋ3 = c� + x3�x1 − d� + ��c + ���d�y3 + ��1 − ��y1y3

+ �p1 − �y3��x1 − �y1� + �p2 − �y1��x3 − �y3� . �11�

Note that the coupling in Eq. �11� has nonlinear components
and, in addition, there exist linear coupling terms one for
each of mismatch parameter. The linear coupling terms ob-
viously vanish for identical ��f�y�=0� oscillators as shown
in the first example. This linear coupling plays crucial role in
the stability of synchronization. Details are presented in Sec.
II C. The error dynamics is still governed by ė=He and as-
ymptotically stable for choices of parameters in H matrix to
be Hurwitz. For current simulations, we choose p1=10 and
p2=−10 from a range of possible values shown in a phase
diagram in Fig. 2. It has a dark region in parameter space of
�p1 , p2� for which the H matrix has eigenvalues all with
negative real parts. One can easily choose �p1 , p2� from this
phase diagram to implement CS or AS. Similar phase dia-

gram can always be drawn for any dynamical system to al-
low a wider choice of parameters in H matrix to fulfill the
RH criterion. Numerical results of coupled dynamics are
shown in Fig. 3 for choices of �=1,−1. Time series x1 and
y1 are only shown here but it is also true for other pairs of
state variables of the driver and the response. Note that AS is
established even though the Rössler oscillator is not an in-
version symmetric system. This is in contrast to the earlier
�11,20� observations on antisynchronization via conventional
linear coupling. This fact is further elaborated with the ex-
ample of axial symmetric Lorenz system,

ẋ1 = 	�x2 − x1�, ẋ2 = rx1 − x2 − x1x3,

ẋ3 = − bx3 + x1x2. �12�

The driver Lorenz system with mismatch is

ẏ1 = �	 + �	��y2 − y1� ,

ẏ2 = �r + �r�y1 − y2 − y1y3,

ẏ3 = − �b + �b�y3 + y1y2, �13�

where �	, �r, and �b are the mismatches. System �13�
drives Eq. �12� when the coupling function is derived using
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FIG. 1. �Color online� Coupled HR neuron model: a=1.0, b
=3.0, c=1.0, d=5.0, S=5.0, r=0.003, I=4.1, and p1=−1.5. Time
series x1 and y1 in �a� and plot of x1 vs y1 in �b� show CS ��=1�.
Time series y1 �solid line� and x1 �dotted line� in �c� and x1 vs y1

plot in �d� show AS ��=−1�. Plot of x1 is scaled down in �c� for
visual clarity. Oscillatory driver y1 and response x1 in horizontal
zero line confirms AD ��=0� in �e�.

FIG. 2. Phase diagram of �p1 , p2� in Rössler system: choice of
parameters in H matrix; eigenvalues all have negative real parts in
the dark region.
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FIG. 3. �Color online� Coupled mismatched Rössler system. Re-
sponse: �=1, b=0.15, c=0.2, and d=10; driver parameters are
identical except ��=0.15. Time series of x1 and y1 in �a� and plot
of x1 vs y1 in �b� confirm CS for �=1; time series of x1 �solid line�
and y1 �dotted line� in �c� and plot of x1 vs y1 in �d� confirm AS.
H= �0 −1 −1; 1 b 0; p1 0 p2�T.
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Eqs. �2� and �3�. The H matrix �3�3� for the Lorenz system
is obtained as

H = �− 	 	 0; r + p1 −1 p2; p3 p4 − b�T.

The response system after coupling is then derived,

ẋ1 = 	�x2 − x1� + ��	�y2 − y1� ,

ẋ2 = rx1 − x2 − x1x3 + ���r��1/
�y1 + ��� − 1�y1y3

+ �p1 + �y3��x1 − �y1� + �p2 + �y1��x3 − �y3� ,

ẋ3 = − bx3 + x1x2 − ���b�y3 + ��1 − ��y1y2

+ �p3 − �y2��x1 − �y1� + �p4 − �y1��x2 − �y2� . �14�

Although the coupling appears complicated in Eq. �14�, one
may simplify the coupling by suitable choices of pk�k
=1,2 ,3 ,4� in H matrix. A typical choice is p2=0, p3=0,
p4=0, and p1�1−r when the RH criterion is fulfilled and H
becomes a Hurwitz matrix. For further reduction in coupling
complexity, the driver is chosen identical to the response
except that r+�r=38 and �	=0, �b=0. We deliberately
insert a tuning parameter 
 in Eq. �14� to check the role of
linear coupling that appears due to a mismatch �r. The 

=
c=1 is the critical value for asymptotic stability of syn-
chronization. Results of numerical simulation of coupled Lo-
renz systems �13� and �14� are shown in Fig. 4. Plots of time
series x1 and y1 and of y1 vs x1 show CS for �=1 and AS for
�=−1. All the time series are identical in amplitude but op-
posite in phase for �=−1 although only one of the state
variables is shown in Fig. 4 �see Ref. �18� for details�.
Hence, in axial symmetric Lorenz system too, we achieve
complete AS that is contrary to the existing knowledge in
literature �11,20�. Thus unidirectional OPCL coupling over-
rules the restriction that AS can be observed in inversion
symmetric system only.

Next, we present an example of a Sprott system �24� that
has single quadratic nonlinearity and the coupling is much
simpler for practical implementation �18�. The Sprott system
is given by

ẋ1 = − ax2, ẋ2 = x1 + x3,

ẋ3 = x1 + x2
2 − x3. �15�

Another mismatch Sprott system is taken as a driver,

ẏ1 = − ay2 − �ay2, ẏ2 = y1 + y3,

ẏ3 = y1 + y2
2 − y3. �16�

After coupling, response �15� becomes

ẋ1 = − ax2 − ��a�1/
�y2, ẋ2 = x1 + x3,

ẋ3 = x1 + x2
2 − x3 + ��1 − ��y2

2 + �p − 2�y2��x2 − �y2� .

�17�


 is again inserted as a tuning parameter and taken unity for
the current simulation. The driver and the response are cha-
otic before coupling for a=0.225, �a=0.025. For a choice of
p=−1, H becomes a Hurwitz matrix when we find the time
series of the driver and the response in AS in left panel of
Fig. 5 for control parameter �=−1. Plot of x1 vs y1 in the
right also confirms AS. Note that all state variables are in AS
with the driver variables although the system is not an inver-
sion symmetric one.

C. Transition route to synchronization

As discussed above, the OPCL coupling has only nonlin-
ear components for identical oscillators. Additional coupling
terms appear due to parameter mismatches. The additional
coupling is linear if a mismatch is attached with a linear term
of the system of differential equations modeling a dynamical
system as shown in the examples of Rössler system, the Lo-
renz oscillator, and a Sprott system. However, the additional
coupling is nonlinear if the mismatch parameter is attached
to a nonlinear term of the system of differential equations.
The additional coupling �linear for current examples� helps
neutralize the destabilization effect on synchronization due
to mismatches. To explain their roles on the process of tran-
sition to synchrony, we have inserted a parameter 
 in Eqs.
�14� and �17� for both the Lorenz oscillator and the Sprott
system, respectively. This control parameter 
 is tuned from
both sides of the critical value �
=
c=1�: higher and lower
values as positive and negative variations in mismatch. A
similarity function �
 is then used �1� to estimate the syn-
chronization error between the driver and the response for
varying 
,
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FIG. 4. �Color online� Coupled mismatched Lorenz system. Re-
sponse: r=28, 	=10, and b=8 /3, driver identical except �r=10;

=1. Time series of x1 and y1 in �a�, and plot of y1 vs x1 in �b�
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in �c� and plot of y1 vs x1 in �d� show AS ��=−1�.
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�
 =

�x1�t� − �y1�t − ���2�

�
x1�t�2�
y1�t�2��1/2 . �18�

The similarity function is a statistical measure of the error
between two similar state variables �x1 and y1� of the driver
and the response oscillators with an arbitrary delay �. It is
used as a standard measure of synchronization, particularly,
useful in experiments �25�. For a fixed coupling strength in
coupled oscillators, it shows periodic variations �1,25� for
varying delay ��� but with a global minimum �
=�min. The
similarity function identifies LS when a global minimum ex-
ists at a finite value of ��0. However, a global minimum,

�
=
�

�min=0, at �=0 can also identify CS or AS depending on
the sign of � values. It needs only two similar state variables
of a driver and a response to estimate the synchronization
error that is advantageous in experimental conditions of lim-
ited measurement accessibility. For the Sprott system with a
mismatch, �a=0.025, we vary 
 from 0.5 to 1.5 and estimate
the corresponding �min��=0� for each of 
 value using nu-
merically simulated time series �x1 and y1� and then plot
ln��� vs �
−
c� as shown in Fig. 6�a�. The �min has nonzero
values for all 
 values ��=0� except at a critical value 

=
c when �min=0 at �=0. This is revealed as a sharp dipping
of ln��� into a minimum at the critical value 
c=1 when
�min=0��=0�, confirming synchronization. Effectively, the
parameter 
 acts as a strength of the additional linear cou-
pling due to mismatch. Any compromise with the strength of
the linear coupling will induce degradation in synchrony.
The process of transition to synchrony with control of 
 is
found independent of any system and type of mismatch as
we find the process to repeat for coupled Lorenz system, as
shown in Fig. 6�b�. For the Lorenz system, 
 is varied from
0.8 to 1.2. It is interesting to note that this route of transition
to synchrony follows a unique scaling law �= �
−
c�, where
�1.57 is the slope, and this scaling law is found valid for
both the Sprott system and the Lorenz system as shown in
Figs. 6�c� and 6�d�, respectively. It is also found true for
other systems such as Rössler oscillator. This remains un-
changed whether it is a transition to CS or AS. If we notice
Eqs. �14� and �17� carefully, we find that the coupling added
a matching term in the response relating to the mismatch
term in the driver. This matching term in the response is

actually tuned by 
 until it ensures synchronization at a criti-
cal value 
=
c when the response becomes identical to the
driver. We must mention that the definition and approach of
the OPCL coupling are different from the conventional linear
coupling. Under the conventional linear coupling, a bubbling
transition or on-off intermittency �26� is observed near the
critical coupling strength. This mismatch-induced instability
in synchronization is overcome by increasing the coupling
strength. In the process, PS and LS are observed in mismatch
oscillators with increasing coupling strength and an almost
CS state is finally obtained for very strong coupling. How-
ever, the coupled oscillators remain mismatched even after
the synchronization is achieved. On the other hand, in OPCL
coupling, the coupled oscillators become identical once syn-
chronization is established at a critical value of 
=
c. This is
a mark difference in the process of synchronization under the
OPCL coupling and the conventional linear coupling. We
have also checked that no on-off intermittency is observed
near the 
=
c, higher or lower. Thus the OPCL coupling has
inherent capability to take care of the mismatch in coupled
oscillators and to provide immunity to stable synchronization
by tuning the control parameter 
. The capability of such a
tuning of the control parameter �
� can be used for parameter
estimation.

III. OPCL METHOD: MUTUAL COUPLING

The OPCL coupling in mutually interacting chaotic oscil-
lators was investigated �19� earlier to realize CS, but AS was
not studied there. Now we extend the theory of mutual
OPCL coupling to AS. Two mutually interacting oscillators
under OPCL coupling are

ẋ = f�x� + Dx�x,y�, x � Rn,

ẏ = f�y� + Dy�x,y�, y � Rn, �19�

where the coupling terms are defined by

Dx�x,y� = �H −
df

dx
x=s+

�� x − y

2 � �20�

and

Dy�x,y� = �H −
df

dy
y=s+

�� y − x

2 � , �21�

where s+�t�= �x�t�+y�t� /2� is the synchronization manifold.
It can be easily established that the error dynamics is gov-
erned by ė=He and its zero error solution or synchronization
is asymptotically stable once H is a Hurwitz matrix by an
appropriate selection of its parameters so as to satisfy the RH
criterion. Numerical results are presented in detail in Ref.
�19�. To realize AS using mutual coupling, we modify the
coupling in Eqs. �20� and �21� to Eqs. �22� and �23�, respec-
tively,

Dx�x,y� = �H −
df

dx
x=s−

�� x + y

2 � �22�

and

FIG. 6. Transition route to synchronization: �a� and �c� coupled
Sprott system; �b� and �d� Lorenz system. Open circles for numeri-
cal data points. Slope in �b� and �d�: �1.57.
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Dy�x,y� = �H −
df

dy
x=s−

�� x + y

2 � , �23�

where s−�t�= �x�t�−y�t� /2� is the antisynchronization mani-
fold. However, for AS, an additional condition of inversion
symmetry of the flow of a model system f�y�=−f�−y��f�x�
=−f�−x�� is necessary to be satisfied. Then only the error
dynamics can follow ė=He when the error state is e= �x
+y� for AS, and it is asymptotically stable provided H is a
Hurwitz matrix. As mentioned above, such a restriction of
inversion symmetry of a dynamical system always exists for
AS under linear mutual or unidirectional coupling �11,20�,
while it is overruled in case of unidirectional OPCL cou-
pling. For numerical demonstration, we take an inversion
symmetric double scroll system �27� that is defined by

ẋ1 = cx1 + x3, ẋ2 = x1 − x2, ẋ3 = x1
3 − x2. �24�

The system has single cubic nonlinearity and shows one-
scroll or two-scroll chaos �27� with appropriate choice of
parameter. After the mutual OPCL coupling is established,
the coupled double scroll system is obtained as

ẋ1 = cx1 + x3, ẋ2 = x1 − x2,

ẋ3 = x1
3 − x2 + �p + 3

�x1 − y1�2

4
� �x1 + y1�

2
,

ẏ1 = cy1 + y3, ẏ2 = y1 − y2,

ẏ3 = y1
3 − y2 + �p + 3

�y1 − x1�2

4
� �x1 + y1�

2
. �25�

Numerical results of AS in double scroll systems are shown
in Fig. 7. Time series of the coupled oscillator x1 and y1 and
plot of y1 vs x1 confirm AS.

IV. OPCL COUPLING: MATRIX TYPE

Now we introduce the matrix type OPCL coupling. We
remind that for synchronization using unidirectional cou-
pling, we set a goal dynamics g�t�=�y�t� in Eq. �1�, where
y�t�= �y1 y2 y3�T is the driver state and � is a constant. As a
result, all state variables of the response system are forced
into either a CS or AS state with the driver variables as
decided by a choice of the � value. Even AD can be induced
to a response system by a choice of �=0. We generalize this

result to achieve CS, AS, and AD simultaneously in different
state variables by defining a new goal dynamics g̃�t�,

g̃�t�=
�

�g1�t� g2�t� g3�t��T = ��1y1 �2y2 �3y3�T, �26�

where �i �i=1,2 ,3� is again a constant. The response system
after coupling becomes

ẋ = f�x� + D�x, g̃� , �27�

where the coupling function is defined by

D�x, g̃� = ��1ẏ1

�2ẏ2

�3ẏ3
� − f�g̃� + �H −

� f�g̃�
��g̃�

��x1 − �1y1

x2 − �2y2

x3 − �3y3
� .

�28�

The rest of the theory is similar to what is presented in Sec.
II and can be easily derived. Note that Eq. �28� is a general
form of Eq. �2� for unidirectional OPCL coupling; if �1
=�2=�3 is considered, Eq. �2� is restored from Eq. �28� for
two identical oscillators ��f�y�=0�. For illustration, we con-
sider the example of Sprott system �15�. The response and
driver systems are assumed identical before coupling and
hence the models remain unchanged as in Eqs. �15� and �16�,
respectively, except that the mismatch in Eq. �16� vanishes
��a=0�. After matrix coupling, the response becomes

ẋ1 = − ax2 + a��2 − �1�y2,

ẋ2 = x1 + x3 + ��2 − �1�y1 + ��2 − �3�y3,

ẋ3 = x1 + x2
2 − x3 + ��3 − �2

2�y2
2 + �p − 2�2y2��x2 − �2y2�

+ ��3 − �1�y1. �29�

Matrix coupling thus allows choices of different goals set by
�i for different state variables of a response system, as
shown in Fig. 8. AS state is realized in one response variable
when CS in the other and AD in another response variable.
Similarly, partial attenuation and/or amplification can also be
induced by appropriate choice of the �i values. As mentioned
above, the matrix coupling appears interesting from a prac-
tical viewpoint: in processing industry, concentration of any
of the constituents of a reaction system can either be reduced
or enhanced and even made zero. In neuron oscillators too,
one can switch off any state variable as membrane voltage
while reducing other membrane current for achieving a de-
sired neural dynamics. The results can be easily extended to
mismatched systems that we do not elaborate here.

V. SUMMARY

A general formulation of coupling function is presented,
which is capable of targeting desired responses such as CS,
AS, and AD in identical as well as mismatched chaotic os-
cillators. The coupling function is defined for three different
coupling schemes, unidirectional, mutual, and matrix type
coupling, which are all based on Hurwitz matrix stability.
The Hurwitz matrix can be derived from the Jacobian of the

2
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t

1
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10-1

x 1

y1(b)(a)

FIG. 7. �Color online� Antisynchronization for mutual coupling
in double scroll system: c=0.436, p=−1.5. Time series x1 �solid
line� and y1 �dotted line� of the coupled oscillators in �a� and y1 vs
x1 plot in �b� confirms AS. H= �0 c −1; 1 −1 0; p −1 0�T.
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model flow of a dynamical system. The success of the cou-
pling in inducing asymptotically stable synchronization de-
pends on appropriate selection of parameters of the Hurwitz
matrix. An additional parameter is introduced in the coupling
function that can control CS or AS and thereby allows
switching between CS and AS states for practical purposes

�22�. A numerical example of spiking-bursting Hindmarsh-
Rose neuron model is presented to illustrate the coupling for
two identical oscillators. It is demonstrated that even cessa-
tion of oscillation or AD can be induced in an identical re-
sponse system. Since in reality no two systems are identical,
we extended the coupling function for mismatched chaotic
systems. We find an interesting scaling behavior that appears
during the process of transition to synchrony when one tunes
a coupling parameter in the coupled system. We further ex-
tended the results to mutual OPCL coupling to realize AS in
chaotic systems and infer that AS is so far possible in inver-
sion symmetric systems only under mutual OPCL coupling.
Finally, we introduce a matrix type unidirectional OPCL cou-
pling by which it is possible to induce AS, CS, and even AD
simultaneously in different state variables of a response sys-
tem. This has potential application in processing industry if
one intends to enhance or to reduce the concentration and
even remove another component in catalytic reactions to ob-
tain a desired final product. The OPCL coupling is also able
to realize AS and AD in two dynamical network results of
which are reported elsewhere �28�. We conclude that al-
though the mathematical formulation looks complicated, the
coupling is still physically realizable as shown earlier �18�
and may be used for practical purposes �22�.
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